GINEERING
% abepartment of Electrical &
omputer Engineering

2 Representation %f\rggljyymtt‘gers,

& -
- -
Rz
o -
AN~
LY o |
’"l';"\ h b-- ! \ vy
) , &
-\ -
- """ — 2 ‘
I ¢
; >~
- g ' , . . \\ \ :
‘g W A7 2 Z - g
Representation of real numbers
&& W ? |
: 7 N
v 4 _ -
“ ~
Douglas Wilhelm Harder, LEL, M.Math.
dwharder@uwaterloo.ca
dwharder@gmail.com -
B B OE 204 Numerical methods > ¥

Representation®freal numbérs ZIW7 "~

, v’ TR

Introduction

* In this topic, we will
Consider representations of real numbers
Describe our six-decimal-digit representation

Look at relative error, addition, multiplication and issues with
floating-point numbers

Discuss special numbers such as representations of zero,
denormalized, infinity and indeterminant

Describe the double-precision floating-point representation
Consider some of the properties

Perform addition and multiplication of doubles

n of real numbers Representationfofaeal numbers /ZINAS

: %wt'
Double-precision floating-point numbers

 The double-precision floating-point representation is as follows:
bb

e For to) this represents
(_1) 1.b1b2b3b4b5"°b52><2 —01111111111
e For - this represents
(_1) O.b1b2b3b4b5”'b52><2 —-01111111111

e We also have that
000000000V PRRPRRRRPVBRARRRRCRACRAORAORRRA0

(=1) o

 We also have, a reserved representation for indeterminant results:
1000000000000000000000000000PPRRRPRAPPPPPPOOEEOERRR

— s is called not-g-number or NaN
2133/ 1:23:20 DOEHe—prec(;;sionel;loating—ptacllnt numbers > J\] 2

Jar

-
 Pan b
o

»

L

Double-precision floating-point numbers

Approaching floating-point numbers in this format makes it
difficult, at best, to understand the design

— First, there are far too many bits to easily grasp
— Second, binary numbers are already difficult to grasp

Consequently, we will start, instead, with simpler decimal
representations of real numbers

— All the design issues we will see will also affect the binary
representations of real numbers

RepreSentatloh:ﬁﬁreal rmmbers 4&&“‘ ..'
P2

Representation of integers

While integers can be represented exactly

— Suppose we restricted ourselves to storing integers using only six
decimal digits:

+NNNNNN
— This allows you to store numbers in the range
=999999 ta +999999
— One problem: there are two representations of zero:
-000000 and +000000

— This is solved using 2s complement in binary and 10s
complement in decimal

« We won’t go into this...

3 Represeﬂtatlo‘ﬁ\ﬁf-real numbers / o
1 'h’

e

Representation of numbers on [0, 1)

* Suppose we were modelling processor usage:
— Interpret the six digits
NNNNNN
as representing
0.NNNNNN

— This allows us to store any real number on the range [0, 1) with
varying levels of precisions

»
4
»

‘ A M LS T
" Representatiofifreal numbers /"tv- :
o ':'-.!’.{"

Representing larger ranges

« Alternatively, we could interpret the six digits
+NNNNNN
as representing
+ NNN.NNN
— This allows us to store any real number on the range
[-1000, 10001,
again, with varying precisions

Floating-point representations

* All such representations are called fixed-point representations
— The decimal point is fixed in a specific location

— This is ideal if you know that your real numbers must be
bounded on some range
* For example, [0, 1) or [0, 256)
— This is less optimal if we want to represent a much more
significant range of real numbers

— For this, we will use the scientific notation approach described
previously:

d .ddddd. d x10°

345

b bb,bbb. b x2°

Floating-point representations

[EEE 754 uses this approach in defining the double-precision
floating-point representation (double)

— You need to understand the reasoning behind the design, the
choices, and the consequent weaknesses

— Itis more difficult when trying to describe 64-bit binary
numbers!

Thus, we will introduce a six-decimal-digit representation of real
numbers that parallels the IEEE 754 standard

— All the design features of this six-digit representation are faithful
to parallel design decisions for

— All the weaknesses of this six-decimal-digit representation
parallel the weaknesses of the 64-bit binary representation

A simple floating-point representation

* Here is our representation:
NMMM
 For EE going from 00 to 98, this represents:

+ N .MMM x10" ¥

* For storing non-zero values, we will require that N # 0

Smallest and largest positive values

The smallest positive number in this representation is
1000

This represents

+1.000x10"* =107

The largest positive number in this representation is
9999

This represents

+9.999%x10 ¥ =9.999%x10" ~ 10"

The range and relative error

* Thus, this format allows us to represent real numbers on the
range |: 49 150
10°% .10]

with four digits of precision

— Thus, we can represent essentially all such numbers with a
relative error no greater than

5x10~* =0.0005

or 0.05% relative error

« All things considered, that’s not bad for six decimal digits

* Essentially, we can actually represent \/ googol

Addition

* Suppose we want to add or multiply such numbers

— Such operations take place as per normal,
but the result must be stored in the given format

— For example, suppose we want to add these two numbers:
7235 +626323

7.235x10%*
+6.323x10%°"
IESE0c s I 558 <105

— We must, however, round this to four significant digits:
1356

* Note that we didn’t need to calculate the exponent

Addition

* Even if the exponents are different, addition is straight-forward

— For example, suppose we want to add these two numbers:

5486 256323
5.486x102"* 0.05486 x10>*
me a0 g e nEl Sl

6.37786x10>¥

— We must, however, round this to four significant digits:
6378

Addition

Consider this example:

— For example, suppose we want to add these two numbers:
9285 5629511

0285x10°% 9.285 x10°**
T 2911x10°%* +0.0002911x10°**

0.2852911x10>* ™"

— We must, however, round this to four significant digits:
9285

Weaknesses

We note that:

— In the first two examples, we had to round

e This introduces an error into our result as a consequence of
performing one arithmetic operation

— How many arithmetic operations are required for Gaussian
elimination and backward substitution?

— In the third example, we had the following:
X+y=Xx

* If you were shown this in secondary school,
your first reaction would be thaty =0

Adding three numbers

* Consider this example:
— For example, suppose we want to add these three numbers:
5234 +5.2348 +501593

— Without explicitly calculating the result,
the sum of the first two is 5.25748 x 10°4-%

 This is stored as
5257

— Without explicitly calculating the result,
adding the third onto this is 5.2571593 x 10°4-%

 This is stored as
5257

Adding three numbers

Consider this example:
— For example, suppose we want to add these three numbers:
5234 -5.2348 +501593

— Instead, add the second two first,
the sum of which is 2.36393 x 10°%2-%

 This is stored as

2364

— Without explicitly calculating the result,
adding this to the firstis 5.25764 x 10°*-%

* This is stored as
5258
— Compare this with, and which is better?
5257

18

Adding three numbers

[f we were not to do intermediate rounding, the sum of
545234 +522348 +501593
has the exact value 5.2576393 x 10°4-4°

Rounded to four digits, this is 5.258 x 10°*-%°

— Consequently, the second is the result a better means of
calculating this sum

5257 +545258
What this means is that for floating-point numbers:
(x+y)+z£x+(y+z)

When adding positive numbers,
it is best to add them from smallest to largest

N : M\
< a1

Kahan summation algorithm

* I[ssue: sorting a large list of numbers can be expensive

 Prof. Kahan, who led the IEEE 754 standards committee,
came up with an algorithm for adding positive floating-point
numbers without sorting them:

double kahan_summation(double const array[], std::size t const capacity) {

double sum{ 0.0 };
double compensation{ 0.0 };

for (std::size t k{@}; k < capacity; ++k) {
double modified_array_k{ array[k] - compensation };
double next_sum{ sum + modified array k };
compensation = (next_sum - sum) - modified array k;
sum = next_sum;

}

return sum;

}

— See https://en.wikipedia.org/wiki/ Kahan_summation_algorith)lgl

Multiplication

* Consider this example:

— For example, suppose we want to multiply these two numbers:

3251 +51.2048
350 e 3.251x10"
x 2.048 x10°% x 2.048 x107°

6.658048 %10 =6.658048x10°
— 6.658048x10°* %

— We must, however, round this to four significant digits:
6658

Reciprocals

 Suppose we are finding the reciprocal of a number:
5492

— Thus, we calculate:

: _ L 0.1820830299

5492x10%* 5492
—1.820830299x10"

—=1.820830299 x 10" *

— We must, however, round this to four significant digits:
1821

Reciprocals

 Whatis the reciprocal of
1821

— Again, we calculate:

1 = 1 ~ 5.491488193

1.821x10%* 0.1821
—5.491488193 x10°

—5.491488193x10%*

— We must, however, round this to four significant digits:
5491

— Notice that the above number was the calculate reciprocal of:
5492

Further weaknesses

* Consequently, for floating-point numbers,

it is also not true that

1
— =
1/x

* You may additionally deduce that

X
2 orx

12

if we calculate xy first

Subtractive cancellation

e Suppose we want to approximate the derivative of sin(x) atx =1

sin(l.00D =sin(1) _ | poccr o0 +488420100—+488414710

0.001 +461000
sin(+491001) —sin(+491000) +4&8420—+488415
+461000 B +461000
~ +455000
. +461000
=+485000

=0.5

* Even though each error is 0.05%, the relative error jumped to 7.4%

Issue: Subtracting two numbers are relatively close to each other

Summary of floating-point arithmetic

* (Consequently, each arithmetic operation:
— May introduce additional rounding errors
— May not even follow the commonly held rules of algebra

 We must therefore take steps to mitigate, as much as is
reasonably possible, the effect of using floating-point numbers

Increasing precision

* One step is to store more digits:
— The data type float is not very precise

* Never use it for engineering computations,
unless it deals with images to be viewed by humans

— The name double comes from double-precision floating-point
numbers, suggesting it has approximately twice as many
significant bits

* This is usually appropriate for most engineering computations
with appropriately designed algorithms

— The type 1long double occupies 10 bytes instead of 8 bytes,
yielding even more bits of accuracy

e This, however, is not necessary in most cases

Increasing precision

* The floating-point registers on some processors may actually
store long double instead of double

— Consequently, your calculations may be more accurate than you
expect ©

* Problem: as soon as they are stored back in main memory,
they must be rounded to the precision of double

Floating point unit

Unique representations: normalization

* Recall our representation:
NMMM

* Here, EE went from 00 to 98, this represents:
+N MMM <10 %
 Why did we require that N # 0?

— If we didn’t make this restriction, there could be multiple
representations of the same value:

1000
0100
0010
0001

Comparison operators

* Thus, our representation ensures that two floating-point numbers
are equal if and only if their digits are equal

* Question: Of these two positive numbers, which is the larger?
5932

7184

 The hard way is to determine that these represent
5.932x107" and 7.184x10*

— Note, however, if we just compare the two numbers as integers,
we immediately see the second is the largest integer

— Thus, if one floating-point number interpreted as an integer is
greater than another,
then the floating-point number, too, is greater than the other

— Thus, even comparisons can be done easily in hardware

Sorting floating-point numbers

* For example, sort these as floating-point numbers
+588431 +836273 +290481 +568189 +142515 +223636 +568866 +857600

 We don't need to know what they represent,
just sort them as integers
+142515 +223636 +290481 +568189 +568866 +588431 +836273 +857600

Going outside our bounds

* Recall that with integer arithmetic:
— Overflow and underflow cause values to wrap
— Division by zero causes an exception that terminates execution

* For floating point numbers, it would be horrible if adding to the
largest float results in the largest negative float...

— It would also be sub-optimal if calculations resulted in the
termination of the program...

Representation of zero

* Recall we that we required N to be non-zero:
NMMM
— We required that EE goes from 00 to 98 to represent

+N .MMM <10 %

* We will use the following to represent plus or minus zero:
0000
— Why two representations of zero?
* The first, 0000 represents small positive values
* The second, 0000 represents small negative values

— Of course, x + +0 = x and x + —0 = x for all non-zero x

Infinity

* Recall we did not allow the exponent to be 99:
NMMM
— We required that EE goes from 00 to 98 to represent
+ N .MMM x10 ¥
 We will use the following to represent plus or minus infinity:
0000

— Thus, if we add two or multiply two large numbers that cannot
represented by a floating-point number, this results in +o

* Note that we can still do arithmetic with infinity:

+o00 + x =+ if x > —0 —0+ x=-00 if x < +o0

+oo x x =40 1f x>0 too x x=—001fx <0

1/4+0 = +o0 1/-0 = —o0

7 reo="10 7= ==0 e 34

55:00/ 1:23:20 * Infinitv > >

Not-a-number

What happens if we calculate an indeterminant result:
— Suppose we calculate +0/+0 or +oo/400 or +oo + —o0?

All these are indeterminant, meaning they do not even evaluate
evaluate to possibly a large or small number

— In numerical algorithms, such results are called not-a-number
— To represent a non-a-number or NaN, we will use

1000
Thus, we are currently using
9000 and 1000

— All other such numbers are used reserved in the IEEE 754
standard

35
B aTalaTal T\ ECSRaY LY SN ~/

X LK

Denormalized numbers

* Finally, the smallest number in our representation is
1000
— This represents
+1.000x10*
 What if we divide this by two?
— This would immediately go from four significant digits to zero...

* Instead, if the exponent is @0, we will allow the first digit to be
ZEero:

+0 MMM x10°*
— These are called denormalized numbers

— These numbers have a larger relative error as there are only
three, two or one significant digits

Denormalized numbers

For example,

+00OMMM +0. MMM x10™ =+ M .MM x10™°
+0000MM +0.0MM x10" =+ M .M x10™"
+00000M +0.00M x10™* =+ M x10~>*
+000000 +0x10™" =0

With each additional leading zero,
the relative error is increased, but it is better than 0

Also, this has one fringe benefit:

x—y=0ifandonlyifx=y

Six-digit summary

* Design:
0000 100
1000 not-a-number or NaN
NMMM + N .MMM x10%~*
OMMM +0. MMM x10"
0000 0

* Problems:

Real numbers can only be represented with a relative error no
greater than 0.05%

Each calculation introduces additional error
x+y=xevenify#0
(X V) FZzErx+ (V+F2Z)

001 o e e
L/\.L/./\z/7_./\«

Double-precision floating-point numbers

 The double-precision floating-point representation is as follows:
bb

* For to , this represents
(_1) 1.b1b2b3b4b5'“b52><2 —01111111111
* For , this represents
(_1) O.b1b2b3b4b5 "'bsz o -0

* We also have that
000V

(—1) 00

 We also have, a reserved representation for indeterminant results:
10000000000000000000000VRVVOERVVVVPAVEEBVVVRRRRERA0

— lhisis called not-a-number or NaN 20

N O 4

Properties of double

* From this, we may deduce that the largest value in magnitude is
17 Va0 T L L S i B L B

— This represents
(=1) LIT1TLw 1 2" = (21) L1111 1% 21~ (=1) 21
— This is approximately +1.80 x 1038

e The smallest normalized number is
| oYL 22 2 22 2 o o 2 o 2 e 2 2 2 L o o 2 2 2 L o o o o 2 L e 2 o) 2 oo 22 2 2

— This represents
(_1) 1.000-..0x 21111111111, :(_1) H-1022
— This is approximately +2.23 x 10-3%8

* The smallest non-zero denormalized number is
oY1) 1% L L o222 22 2 2 2 L L Lo oo o 2 2 2 2 o L L Lo Lo oo oo 2 2) 2 o L e e Lo
— This represents
(_l) 0,000' . 'Ol > 21*1111111111: - (_l) 2*52 > 2*1022 - (_1) 2*1074

11:13 / 1:23:20F Béroimalized nombersatelv +4 94 x Y()—324 40

Properties of double

* You don't have to memorize these
— Approximately 103% to 10°%° is good enough
e The maximum relative erroris2>3=1.11 x 1016

— This is also known as machine epsilon

Addition

* Let’s try adding two such numbers:

01901100000000000000000000000000VVVVVVVVVBVYVYVYBYVAO
1101100

* Note that the exponent is one higher for the second

0.101011
25 LR

10.100001

 Thus, the sum will:

— Have one higher exponent than the larger
— The mantissa will be 9100001

0100010000000000000000000000000000000000VBVBBBBBRLY

42

:'n-7 I 1 ")Q'qn - nf\nl\'mﬂl;’l\l‘l ™ |ml-\r\rn ~ v

Addition

* Let’s try adding two such numbers:

0011011000000000000000000000000000000000000B0BLRVD
0191910000000000000000000000000000000VBVBBBBLBY

* Note that the exponent is three higher for the first

1.0011011

+0.001010101
1.011000001

* Thus, the sum will:

— The same exponent as the larger number
— The mantissa will be 011000001

©11000001000000000000000000000000000000BVBVBBBVBOBVO

Multiplication

Let’s try multiplying two such numbers:

0100
1901100

The first is 2 higher than the bias, the second is one lower

101 0.11011

x (0.11011 L]
11011

+ 1101100

Thus, the product will: 100.00111
— An exponent two higher than the bias
— The mantissa will be 6000111

000011100000000000000000000800000000000A0ANAKAANARNAANNA
44

B B ahn B3 0 ¥ o SN | N R R | et et el B N A R T \N/

Multiplication

e We can check this in Matlab:

s ©100
X O 1901100

00001110P00O0B0B0OOBRVOVBLOVBLBVBBBLBBBBRLBBBBRVBOD

 The first number is 5,
the second is 0.5 + 0.25 + 0.0625 + 0.03125 =0.84375

 The product of these is 4.21875

 [n Matlab, we have:
>> format hex

2> 5

ans = 4000000000000
>> 0.84375

ans = bo000060000000

>> 5*6.84375

122ﬂ1/12320-Demxﬁaﬁmanum§&§999999999@9 v 45

Summary

Following this topic, you now

Understand the difference between fixed-point and floating-point
representations

Understand the representation of numbers, including infinity,
zero, and not-a-number

Are aware of the weaknesses of floating-point numbers
Understand the double-precision floating-point representation

Are aware of how to perform simple operations with such
representations

46

https://en.wi

https://en.wi
https://en.wi

References

Kipedia.org/wi
Kipedia.org/wil
Kipedia.org/wil

Ki/Double-precision_floating-point_format
Ki/Floating-point_arithmetic
Ki/IEEE_754

https://en.wi

Kipedia.org/wil

Ki/William_Kahan

Acknowledgments

Whoever commented on my voice. Please let me know who you are.

Juliette Rocco for noting the error on Slide 14.

LYY At Nl A
e Al S PP

Colophon

These slides were prepared using the Cambria typeface. Mathematical equations
use Times New Roman, and source code is presented using Consolas.

Mathematical equations are prepared in MathType by Design Science, Inc.
Examples may be formulated and checked using Maple by Maplesoft, Inc.

The photographs of flowers and a monarch butter appearing on the title slide and

accenting the top of each other slide were taken at the Royal Botanical Gardens in
October of 2017 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/ e
N e
for more information. ,,.;ﬁ; \EH
™ e T oy ' g A
, O . ,) g e AAMTASE
e G PN : ey <
-~ \,'.T. S Ss . i ::.:"‘._ﬂ‘ LA .‘.“' &
— J A) 4 o s A s N ’T,ﬁ
a 2) : & i
- w 4 : B o
' % - ,; R
X ‘\\ r e,
\ .\._.
- ‘ . ~ e '- ;r

B gt P R e R 49

